کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
533689 | 870152 | 2009 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spectral derivative feature coding for hyperspectral signature analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a new approach to hyperspectral signature analysis, called spectral derivative feature coding (SDFC). It is derived from texture features used in texture classification to dictate gradient changes among adjacent bands in characterizing spectral variations so as to improve better spectral discrimination and classification. In order to evaluate its performance, two known binary coding methods, spectral analysis manager (SPAM) and spectral feature-based binary coding (SFBC) are used to conduct comparative analysis. Experimental results demonstrate that the proposed SDFC performs more effectively in capturing spectral characteristics than do SPAM and SFBC.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 42, Issue 3, March 2009, Pages 395–408
Journal: Pattern Recognition - Volume 42, Issue 3, March 2009, Pages 395–408
نویسندگان
Chein-I Chang, Sumit Chakravarty, Hsian-Min Chen, Yen-Chieh Ouyang,