کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533725 870157 2008 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Face recognition using adaptively weighted patch PZM array from a single exemplar image per person
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Face recognition using adaptively weighted patch PZM array from a single exemplar image per person
چکیده انگلیسی

Though numerous approaches have been proposed for face recognition, little attention is given to the moment-based face recognition techniques. In this paper we propose a novel face recognition approach based on adaptively weighted patch pseudo Zernike moment array (AWPPZMA) when only one exemplar image per person is available. In this approach, a face image is represented as an array of patch pseudo Zernike moments (PPZM) extracted from a partitioned face image containing moment information of local areas instead of global information of a face. An adaptively weighting scheme is used to assign proper weights to each PPZM to adjust the contribution of each local area of a face in terms of the quantity of identity information that a patch contains and the likelihood of a patch is occluded. An extensive experimental investigation is conducted using AR and Yale face databases covering face recognition under controlled/ideal conditions, different illumination conditions, different facial expressions and partial occlusion. The system performance is compared with the performance of four benchmark approaches. The encouraging experimental results demonstrate that moments can be used for face recognition and patch-based moment array provides a novel way for face representation and recognition in single model databases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 41, Issue 12, December 2008, Pages 3799–3812
نویسندگان
, , ,