کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533773 870166 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kernel quadratic discriminant analysis for small sample size problem
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Kernel quadratic discriminant analysis for small sample size problem
چکیده انگلیسی
It is generally believed that quadratic discriminant analysis (QDA) can better fit the data in practical pattern recognition applications compared to linear discriminant analysis (LDA) method. This is due to the fact that QDA relaxes the assumption made by LDA-based methods that the covariance matrix for each class is identical. However, it still assumes that the class conditional distribution is Gaussian which is usually not the case in many real-world applications. In this paper, a novel kernel-based QDA method is proposed to further relax the Gaussian assumption by using the kernel machine technique. The proposed method solves the complex pattern recognition problem by combining the QDA solution and the kernel machine technique, and at the same time, tackles the so-called small sample size problem through a regularized estimation of the covariance matrix. Extensive experimental results indicate that the proposed method is a more sophisticated solution outperforming many traditional kernel-based learning algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 41, Issue 5, May 2008, Pages 1528-1538
نویسندگان
, , , ,