کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533865 870177 2005 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning multi-kernel distance functions using relative comparisons
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Learning multi-kernel distance functions using relative comparisons
چکیده انگلیسی

In this manuscript, a new form of distance function that can model spaces where a Mahalanobis distance cannot be assumed is proposed. Two novel learning algorithms are proposed to allow that distance function to be learnt, assuming only relative-comparisons training examples. This allows a distance function to be learnt in non-linear, discontinuous spaces, avoiding the need for labelled or quantitative information. The first algorithm builds a set of basic distance bases. The second algorithm improves generalisation capability by merging different distance bases together. It is shown how the learning algorithms produce a distance function for clustering multiple disjoint clusters belonging to the same class. Crucially, this is achieved despite the lack of any explicit form of class labelling on the training data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 38, Issue 12, December 2005, Pages 2653–2657
نویسندگان
, ,