کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
533979 870197 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An MRF model for binarization of music scores with complex background
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
An MRF model for binarization of music scores with complex background
چکیده انگلیسی


• Music score binarization in the presence of complex background is a challenging issue.
• Staff lines are used for the modeling of the color information of the foreground.
• The binarization is defined as the labeling process of the GMMRF model.
• Tensor voting based GMM is used for the color modeling.

We present a Gaussian Mixture Markov Random Field (GMMRF) model that is effective for the binarization of music score images with complex backgrounds. The binarization of music score documents containing noises with arbitrary shapes and/or non-uniform colors in the background area is a very challenging problem. In order to extract the content knowledge of music score documents, the staff lines are extracted by first applying a stroke width transform. With the color and spatial information of the detected staff lines, we can accurately model the foreground and background color distribution, in which a GMMRF framework is used to make the binarization robust to variations in colors. Then, the staff line information is employed for guiding the GMMRF labeling process. In the experiment, the music score images captured by camera show promising results compared to existing methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 69, 1 January 2016, Pages 88–95
نویسندگان
, , , ,