کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534084 870216 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning Bayesian network structure using Markov blanket decomposition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Learning Bayesian network structure using Markov blanket decomposition
چکیده انگلیسی

Causal structure learning algorithms construct Bayesian networks from observational data. Using non-interventional data, existing constraint-based algorithms may return I-equivalent partially directed acyclic graphs. However, these algorithms do not fully exploit the graphical properties of Bayesian networks, and require many redundant tests that reduce both speed and accuracy. In this paper, we introduce ideas to exploit such properties to increase the speed and accuracy of causal structure learning for multivariate normal data. In numerical experiments on five benchmarking networks our proposed algorithm was faster and more accurate than recently-developed algorithms.


► We introduce two properties that enhance causal structure learning performance.
► We prove that the proposed algorithm works under several assumptions.
► The proposed algorithm outperforms recent algorithms in both speed and accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 33, Issue 16, 1 December 2012, Pages 2134–2140
نویسندگان
, ,