کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534250 870238 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continuous sign language recognition using level building based on fast hidden Markov model
ترجمه فارسی عنوان
به رسمیت شناختن مداوم گواهی نامه با استفاده از سطح ساختمان بر اساس مدل پنهان مارکوف پنهان است
کلمات کلیدی
به رسمیت شناختن مداوم زبان نشانه، ساختمان سطح، مدل سریع مارکف پنهان، محدودیت گرامر، محدود کردن طول نشانه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• HMM-based Level Building algorithm outperforms other methods.
• Performance rises when employing Grammar and sign length constraints.
• System runs faster by using a fast algorithm for HMM.

Sign sequence segmentation and sign recognition are two main problems in continuous sign language recognition (CSLR) system. In recent years, dynamic time warping based Level Building (LB-DTW) algorithm has successfully dealt with both two challenges simultaneously. However, there still exists two crucial problems in LB-DTW: low recognition performance due to bad similarity function and offline due to high computation. In this paper, we use hidden Markov model (HMM) to calculate the similarity between the sign model and testing sequence, and a fast algorithm for computing the likelihood of HMM is proposed to reduce the computation complexity. Furthermore, grammar constraint and sign length constraint are employed to improve the recognition rate and a coarse segmentation method is proposed to provide the maximal level number. In experiments with a KINECT dataset of Chinese sign language containing 100 sentences composed of 5 signs each, the proposed method shows superior recognition performance and lower computation compared to other existing techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 78, 15 July 2016, Pages 28–35
نویسندگان
, , ,