کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
534261 | 870240 | 2011 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Relevance feedback based on genetic programming for image retrieval
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents two content-based image retrieval frameworks with relevance feedback based on genetic programming. The first framework exploits only the user indication of relevant images. The second one considers not only the relevant but also the images indicated as non-relevant.Several experiments were conducted to validate the proposed frameworks. These experiments employed three different image databases and color, shape, and texture descriptors to represent the content of database images. The proposed frameworks were compared, and outperformed six other relevance feedback methods regarding their effectiveness and efficiency in image retrieval tasks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 32, Issue 1, 1 January 2011, Pages 27–37
Journal: Pattern Recognition Letters - Volume 32, Issue 1, 1 January 2011, Pages 27–37
نویسندگان
C.D. Ferreira, J.A. Santos, R. da S. Torres, M.A. Gonçalves, R.C. Rezende, Weiguo Fan,