کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
534314 | 870244 | 2014 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Bayesian approach to the Lee–Seung update rules for NMF
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
• A new variational Bayes algorithm for non-negative matrix factorization is proposed.
• The algorithm VBNMF generalizes the classical Lee–Seung multiplicative update rules.
• The Lee–Seung rules are obtained from a MAP approximation of the VBNMF algorithm.
• The VBNMF can provide model order selection and automatic relevance detection.
NMF is a Blind Source Separation technique decomposing multivariate non-negative data sets into meaningful non-negative basis components and non-negative weights. In its canonical form an NMF algorithm was proposed by Lee and Seung (1999) [31] employing multiplicative update rules. In this study we show how the latter follow from a new variational Bayes NMF algorithm VBNMF employing a Gaussian noise kernel.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 45, 1 August 2014, Pages 251–256
Journal: Pattern Recognition Letters - Volume 45, 1 August 2014, Pages 251–256
نویسندگان
R. Schachtner, G. Poeppel, A.M. Tomé, E.W. Lang,