کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
534529 | 870262 | 2014 | 8 صفحه PDF | دانلود رایگان |
• Novel technique to reduce search space of an object detector.
• Multi-scale spectral residue analysis of images to find regions of interest.
• Evaluation of several contrast normalization techniques to enhance performance.
• In-depth analysis of impact on detector performance and runtime speed.
Using an object detector over a whole image can require significant processing time. This is so since the majority of the images, in common scenarios, is composed of non-trivial amounts of background information, such as sky, ground and water. To alleviate this computational load, image search space reduction methods can make the detection procedure focus on more distinctive image regions. In this sense, we propose here the use of saliency information to organize regions based on their probability of containing objects. The proposed method was grounded on a multi-scale spectral residue (MSR) analysis for saliency detection. For better search space reduction, our method enables fine control of search scale, presents more robustness to variations on saliency intensity along an object length, and also a straightforward way to control the balance between search space reduction and false negatives, both being a consequence of region selection. MSR was capable of making object detection three to five times faster compared to the same detector without MSR. A thorough analysis was accomplished to demonstrate the effectiveness of the proposed method using a custom LabelMe dataset of person images, and also a Pascal VOC 2007 dataset, containing several distinct object classes.
Journal: Pattern Recognition Letters - Volume 39, 1 April 2014, Pages 31–38