کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534547 870265 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new interactive semi-supervised clustering model for large image database indexing
ترجمه فارسی عنوان
یک مدل خوشه بندی نیمه نظارت تعاملی جدید برای نمایه سازی پایگاه داده تصویر بزرگ
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Propose a new interactive semi-supervised clustering model.
• Present an experimental comparison between our model and the semi-supervised HMRF-kmeans.
• Present and compare strategies for deducing pairwise constraints from the user feedbacks.

Indexing methods play a very important role in finding information in large image databases. They organize indexed images in order to facilitate, accelerate and improve the results for later retrieval. Alternatively, clustering may be used for structuring the feature space so as to organize the dataset into groups of similar objects without prior knowledge (unsupervised clustering) or with a limited amount of prior knowledge (semi-supervised clustering).In this paper, we introduce a new interactive semi-supervised clustering model where prior information is integrated via pairwise constraints between images. The proposed method allows users to provide feedback in order to improve the clustering results according to their wishes. Different strategies for deducing pairwise constraints from user feedback were investigated. Our experiments on different image databases (Wang, PascalVoc2006, Caltech101) show that the proposed method outperforms semi-supervised HMRF-kmeans (Basu et al., 2004).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 37, 1 February 2014, Pages 94–106
نویسندگان
, , , ,