کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534555 870265 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semi-supervised ensemble update strategies for on-line classification of fMRI data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Semi-supervised ensemble update strategies for on-line classification of fMRI data
چکیده انگلیسی


• We apply classifier ensembles with online updates to streaming fMRI data.
• We compare five update strategies using naive labels, predicted by the classifiers.
• Ensembles which update using the ensemble decision are shown to be most accurate.
• Updating only when the ensemble is confident in the decision improves performance.

Real time classification of fMRI data allows for neurofeedback experiments, whereby stimuli are updated in accordance with the response of the brain. In order to better facilitate real time fMRI classification, we propose a random subspace ensemble of online linear classifiers. In the absence of true class labels, classifiers are updated using the ‘naive’ label – the label predicted by the classifier. We propose three new ensemble update strategies, using the ensemble decision for updates. Our methods are tested on two emotion based fMRI data sets. We show that the best results are produced by an ensemble which updates using the ensemble decision, constrained by ensemble confidence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 37, 1 February 2014, Pages 172–177
نویسندگان
,