کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534672 870277 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Zero knowledge hidden Markov model inference
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Zero knowledge hidden Markov model inference
چکیده انگلیسی

Hidden Markov models (HMMs) are widely used in pattern recognition. HMM construction requires an initial model structure that is used as a starting point to estimate the model’s parameters. To construct a HMM without a priori knowledge of the structure, we use an approach developed by Crutchfield and Shalizi that requires only a sequence of observations and a maximum data window size. Values of the maximum data window size that are too small result in incorrect models being constructed. Values that are too large reduce the number of data samples that can be considered and exponentially increase the algorithm’s computational complexity. In this paper, we present a method for automatically inferring this parameter directly from training data as part of the model construction process. We present theoretical and experimental results that confirm the utility of the proposed extension.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 30, Issue 14, 15 October 2009, Pages 1273–1280
نویسندگان
, , , ,