کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
534676 | 870277 | 2009 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A stochastic version of Expectation Maximization algorithm for better estimation of Hidden Markov Model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper attempts to overcome the local convergence problem of the Expectation Maximization (EM) based training of the Hidden Markov Model (HMM) in speech recognition. We propose a hybrid algorithm, Simulated Annealing Stochastic version of EM (SASEM), combining Simulated Annealing with EM that reformulates the HMM estimation process using a stochastic step between the EM steps and the SA. The stochastic processes of SASEM inside EM can prevent EM from converging to a local maximum and find improved estimation for HMM using the global convergence properties of SA. Experiments on the TIMIT speech corpus show that SASEM obtains higher recognition accuracies than the EM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 30, Issue 14, 15 October 2009, Pages 1301–1309
Journal: Pattern Recognition Letters - Volume 30, Issue 14, 15 October 2009, Pages 1301–1309
نویسندگان
Shamsul Huda, John Yearwood, Roberto Togneri,