کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534828 870296 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Human action recognition by feature-reduced Gaussian process classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Human action recognition by feature-reduced Gaussian process classification
چکیده انگلیسی

This paper presents a spectral analysis-based feature-reduced Gaussian Processes (GP) classification approach to recognition of articulated and deformable human actions from image sequences. Using Tensor Subspace Analysis (TSA), space–time human silhouettes extracted from action sequences are transformed to a low dimensional multivariate time series, from which structure-based statistical features are extracted to summarize the action properties. GP classification, based on spectrally reduced features, is then applied to learn and predict action categories. Experimental results on two real-world state-of-the-art datasets show that the GP classification outperforms a Support Vector Machine (SVM). In particular, spectral feature reduction can effectively eliminate the inconsistent features, while leaving performance undiminished. Moreover, compared with Automatic Relevance Determination (ARD), the spectral way for feature reduction is more efficient.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 30, Issue 12, 1 September 2009, Pages 1059–1066
نویسندگان
, , ,