کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
534909 | 870303 | 2008 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Consensus unsupervised feature ranking from multiple views
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Feature ranking is a kind of feature selection process which ranks the features based on their relevances and importance with respect to the problem. This topic has been well studied in supervised classification area. However, very few works are done for unsupervised clustering under the condition that labels of all instances are unknown beforehand. Thus, feature ranking for unsupervised clustering is a challenging task due to the absence of labels of instances for guiding the computations of the relevances of features. This paper explores the feature ranking approach within the unsupervised clustering area. We propose a novel consensus unsupervised feature ranking approach, termed as unsupervised feature ranking from multiple views (FRMV). The FRMV method firstly obtains multiple rankings of all features from different views of the same data set and then aggregates all the obtained feature rankings into a single consensus one. Experimental results on several real data sets demonstrate that FRMV is often able to identify a better feature ranking when compared with that obtained by a single feature ranking approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 29, Issue 5, 1 April 2008, Pages 595-602
Journal: Pattern Recognition Letters - Volume 29, Issue 5, 1 April 2008, Pages 595-602
نویسندگان
Yi Hong, Sam Kwong, Yuchou Chang, Qingsheng Ren,