کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
534965 870309 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A weighted MVDR beamformer based on SVM learning for sound source localization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A weighted MVDR beamformer based on SVM learning for sound source localization
چکیده انگلیسی
A weighted minimum variance distortionless response (WMVDR) algorithm for near-field sound localization in a reverberant environment is presented. The steered response power computation of the WMVDR is based on a machine learning component which improves the incoherent frequency fusion of the narrowband power maps. A support vector machine (SVM) classifier is adopted to select the components of the fusion. The skewness measure of the narrowband power map marginal distribution is showed to be an effective feature for the supervised learning of the power map selection. Experiments with both simulated and real data demonstrate the improvement of the WMVDR beamformer localization accuracy with respect to other state-of-the-art techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 84, 1 December 2016, Pages 15-21
نویسندگان
, , ,