کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535017 870312 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Online signature verification based on writer dependent features and classifiers
ترجمه فارسی عنوان
تأیید امضای آنلاین بر اساس ویژگی های وابسته نویسنده و طبقه بندی کننده
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Online signature verification based on writer dependent characteristics.
• Exploration of writer dependent characteristics at feature level and classifier level.
• Efficacy of the model is demonstrated on benchmarking dataset.
• Lowest EER compared to state of the art models with sufficient training samples.

In this work, an approach for online signature verification based on writer specific features and classifier is investigated. Existing models for online signatures are generally writer independent, as a common classifier or fusion of classifier is used on a common set of features for all writers during verification. In contrast, our approach is based on the usage writer dependent features as well as writer dependent classifier. The two decisions namely optimal features suitable for a writer and a classifier to be used for authenticating the writer are taken based on the error rate achieved with the training samples. The performance of our model is tested on both MCYT-100 (DB1), a sub corpus of MCYT data set, consisting of signatures of 100 writers, MCYT-330 (DB2) consisting of signatures of all 330 writers and visual subcorpus of SUSIG dataset. Experimental results confirm the effectiveness of writer dependent characteristics for online signature verification. The error rate that we achieved is lower when compared to many existing contemporary works on online signature verification especially when the number of training samples available for each writer is sufficient enough.

Figure optionsDownload high-quality image (101 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 80, 1 September 2016, Pages 129–136
نویسندگان
, , , ,