کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535046 870316 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generic object recognition with regional statistical models and layer joint boosting
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Generic object recognition with regional statistical models and layer joint boosting
چکیده انگلیسی

This paper presents novel regional statistical models for extracting object features, and an improved discriminative learning method, called as layer joint boosting, for generic multi-class object detection and categorization in cluttered scenes. Regional statistical properties on intensities are used to find sharing degrees among features in order to recognize generic objects efficiently. Based on boosting for multi-classification, the layer characteristic and two typical weights in sharing-code maps are taken into account to keep the maximum Hamming distance in categories, and heuristic search strategies are provided in the recognition process. Experimental results reveal that, compared with interest point detectors in representation and multi-boost in learning, joint layer boosting with statistical feature extraction can enhance the recognition rate consistently, with a similar detection rate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 28, Issue 16, 1 December 2007, Pages 2227–2237
نویسندگان
, , ,