کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535054 870316 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhancing quality of knowledge synthesized from multi-database mining
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Enhancing quality of knowledge synthesized from multi-database mining
چکیده انگلیسی

Multi-database mining using local pattern analysis could be considered as an approximate method of mining multiple large databases. Thus, it might be required to enhance the quality of knowledge synthesized from multiple databases. Also, many decision-making applications are directly based on the available local patterns in different databases. The quality of synthesized knowledge/decision based on local patterns in different databases could be enhanced by incorporating more local patterns in the knowledge synthesizing/processing activities. Thus, the available local patterns play a crucial role in building efficient multi-database mining applications. We represent patterns in condensed form by employing a coding called ACP coding. It allows us to consider more local patterns by lowering further the user inputs, like minimum support and minimum confidence. The proposed coding enables more local patterns participate in the knowledge synthesizing/processing activities and thus, the quality of synthesized knowledge based on local patterns in different databases gets enhanced significantly at a given pattern synthesizing algorithm and computing resource.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 28, Issue 16, 1 December 2007, Pages 2312–2324
نویسندگان
, ,