کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535230 870333 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mean shift: An information theoretic perspective
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Mean shift: An information theoretic perspective
چکیده انگلیسی

This paper develops a new understanding of mean shift algorithms from an information theoretic perspective. We show that the Gaussian blurring mean shift (GBMS) directly minimizes the Renyi’s quadratic entropy of the dataset and hence is unstable by definition. Further, its stable counterpart, the Gaussian mean shift (GMS), minimizes the Renyi’s “cross” entropy where the local stationary solutions are modes of the dataset. By doing so, we aptly answer the question “What does mean shift algorithms optimize?”, thus highlighting naturally the properties of these algorithms. A consequence of this new understanding is the superior performance of GMS over GBMS which we show in a wide variety of applications ranging from mode finding to clustering and image segmentation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 30, Issue 3, 1 February 2009, Pages 222–230
نویسندگان
, , ,