| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 535373 | 870343 | 2006 | 9 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												A clustering-based method for unsupervised intrusion detections
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 چشم انداز کامپیوتر و تشخیص الگو
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Detection of intrusion attacks is an important issue in network security. This paper considers the outlier factor of clusters for measuring the deviation degree of a cluster. A novel method is proposed to compute the cluster radius threshold. The data classification is performed by an improved nearest neighbor (INN) method. A powerful clustering-based method is presented for the unsupervised intrusion detection (CBUID). The time complexity of CBUID is linear with the size of dataset and the number of attributes. The experiments demonstrate that our method outperforms the existing methods in terms of accuracy and detecting unknown intrusions.
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 27, Issue 7, May 2006, Pages 802–810
											Journal: Pattern Recognition Letters - Volume 27, Issue 7, May 2006, Pages 802–810
نویسندگان
												ShengYi Jiang, Xiaoyu Song, Hui Wang, Jian-Jun Han, Qing-Hua Li,