کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535374 870343 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
3D target recognition using cooperative feature map binding under Markov Chain Monte Carlo
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
3D target recognition using cooperative feature map binding under Markov Chain Monte Carlo
چکیده انگلیسی

A robust and effective feature map integration method is presented for infrared (IR) target recognition. Noise in an IR image makes a target recognition system unstable in pose estimation and shape matching. A cooperative feature map binding under computational Gestalt theory shows robust shape matching properties in noisy conditions. The pose of a 3D target is estimated using a Markov Chain Monte Carlo (MCMC) method, a statistical global optimization tool where noise-robust shape matching is used. In addition, bottom-up information accelerates the recognition of 3D targets by providing initial values to the MCMC scheme. Experimental results show that cooperative feature map binding by analyzing spatial relationships has a crucial role in robust shape matching, which is statistically optimized using the MCMC framework.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 27, Issue 7, May 2006, Pages 811–821
نویسندگان
, ,