کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535406 870344 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Anomaly detection in hyperspectral imagery based on maximum entropy and nonparametric estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Anomaly detection in hyperspectral imagery based on maximum entropy and nonparametric estimation
چکیده انگلیسی

This paper presents several maximum entropy and nonparametric estimation detectors (MENEDs) which belong to two categories to detect anomaly targets in hyperspectral imagery. First, probability density of target is estimated using Principle of Maximum Entropy according to the low-probability occurrence of target, which simplifies the generalize likelihood ratio test to merely testing background likelihood. Then considering the high complexity of hyperspectral data, in conjunction with the low-probability occurrence of target, sample-depended multimode model (SDMM) is presented to obtain the probability density of the background. Finally, the estimated probability density of the background is tested to detect targets. The proposed MENEDs greatly depend on hyperspectral data sample, rather than the statistical model, to extract the statistical information, which alleviates statistical model discrepancy and has explicit physical mechanism on detection. Experimental results on visible/near-infrared hyperspectral imagery of type I Operational Modular Imaging Spectrometer (OMIS-I) demonstrate that MENEDs perform better than several known detectors, including RX detector (RXD), normalized RXD (NRXD), modified RXD (MRXD), correlation matrix based NRXD (CNRXD), correlation matrix based MRXD (CMRXD), unified target detector (UTD) and low probability detection (LPD).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 29, Issue 9, 1 July 2008, Pages 1392–1403
نویسندگان
, , , ,