کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535411 870344 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-negative matrix factorization with α-divergence
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Non-negative matrix factorization with α-divergence
چکیده انگلیسی

Non-negative matrix factorization (NMF) is a popular technique for pattern recognition, data analysis, and dimensionality reduction, the goal of which is to decompose non-negative data matrix XX into a product of basis matrix AA and encoding variable matrix SS with both AA and SS allowed to have only non-negative elements. In this paper, we consider Amari’s α-divergence as a discrepancy measure and rigorously derive a multiplicative updating algorithm (proposed in our recent work) which iteratively minimizes the α-divergence between XX and ASAS. We analyze and prove the monotonic convergence of the algorithm using auxiliary functions. In addition, we show that the same algorithm can be also derived using Karush–Kuhn–Tucker (KKT) conditions as well as the projected gradient. We provide two empirical study for image denoising and EEG classification, showing the interesting and useful behavior of the algorithm in cases where different values of α   (α=0.5,1,2α=0.5,1,2) are used.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 29, Issue 9, 1 July 2008, Pages 1433–1440
نویسندگان
, , , ,