کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535442 870346 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integration of dense subgraph finding with feature clustering for unsupervised feature selection
ترجمه فارسی عنوان
یکپارچه سازی یافتن بافت گرافیکی با خوشه بندی ویژگی برای انتخاب ویژگی های غیر قابل کنترل
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• Unsupervised feature selection approach using densest finding approach followed by feature clustering.
• Usage of normalized mutual information scores for computing similarity as well as dissimilarity.
• Superiority over three existing methods is established for eight data sets.

In this article a dense subgraph finding approach is adopted for the unsupervised feature selection problem. The feature set of a data is mapped to a graph representation with individual features constituting the vertex set and inter-feature mutual information denoting the edge weights. Feature selection is performed in a two-phase approach where the densest subgraph is first obtained so that the features are maximally non-redundant among each other. Finally, in the second stage, feature clustering around the non-redundant features is performed to produce the reduced feature set. An approximation algorithm is used for the densest subgraph finding. Empirically, the proposed approach is found to be competitive with several state of art unsupervised feature selection algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 40, 15 April 2014, Pages 104–112
نویسندگان
, , , ,