کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535604 870357 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised clustering on dynamic databases
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Unsupervised clustering on dynamic databases
چکیده انگلیسی

Clustering algorithms typically assume that the available data constitute a random sample from a stationary distribution. As data accumulate over time the underlying process that generates them can change. Thus, the development of algorithms that can extract clustering rules in non-stationary environments is necessary. In this paper, we present an extension of the k-windows algorithm that can track the evolution of cluster models in dynamically changing databases, without a significant computational overhead. Experiments show that the k-windows algorithm can effectively and efficiently identify the changes on the pattern structure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 13, 1 October 2005, Pages 2116–2127
نویسندگان
, ,