کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
535863 870396 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Relevance feedback for real-world human action retrieval
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Relevance feedback for real-world human action retrieval
چکیده انگلیسی

Content-based video retrieval is an increasingly popular research field, in large part due to the quickly growing catalogue of multimedia data to be found online. Even though a large portion of this data concerns humans, however, retrieval of human actions has received relatively little attention. Presented in this paper is a video retrieval system that can be used to perform a content-based query on a large database of videos very efficiently. Furthermore, it is shown that by using ABRS-SVM, a technique for incorporating Relevance feedback (RF) on the search results, it is possible to quickly achieve useful results even when dealing with very complex human action queries, such as in Hollywood movies.


► Realistic, noisy videos are searched using content-based information retrieval.
► ABRS-SVMs are incorporated for relevance feedback on the search results.
► Feedback shows strong improvement in accuracy of search results on real-world action datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 33, Issue 4, March 2012, Pages 446–452
نویسندگان
, , , ,