کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
535955 | 870418 | 2011 | 9 صفحه PDF | دانلود رایگان |

Clustering is one of the most important unsupervised learning problems and it consists of finding a common structure in a collection of unlabeled data. However, due to the ill-posed nature of the problem, different runs of the same clustering algorithm applied to the same data-set usually produce different solutions. In this scenario choosing a single solution is quite arbitrary. On the other hand, in many applications the problem of multiple solutions becomes intractable, hence it is often more desirable to provide a limited group of “good” clusterings rather than a single solution. In the present paper we propose the least squares consensus clustering. This technique allows to extrapolate a small number of different clustering solutions from an initial (large) ensemble obtained by applying any clustering algorithm to a given data-set. We also define a measure of quality and present a graphical visualization of each consensus clustering to make immediately interpretable the strength of the consensus. We have carried out several numerical experiments both on synthetic and real data-sets to illustrate the proposed methodology.
► We address the problem of clustering multiple solutions.
► We propose the least squares consensus clustering.
► We extrapolate a small number of different clustering solutions from an initial (large) ensemble.
Journal: Pattern Recognition Letters - Volume 32, Issue 12, 1 September 2011, Pages 1604–1612