کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536021 870436 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constraint scores for semi-supervised feature selection: A comparative study
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Constraint scores for semi-supervised feature selection: A comparative study
چکیده انگلیسی

Recent feature selection scores using pairwise constraints (must-link and cannot-link) have shown better performances than the unsupervised methods and comparable to the supervised ones. However, these scores use only the pairwise constraints and ignore the available information brought by the unlabeled data. Moreover, these constraint scores strongly depend on the given must-link and cannot-link subsets built by the user. In this paper, we address these problems and propose a new semi-supervised constraint score that uses both pairwise constraints and local properties of the unlabeled data. Experiments using Kendall’s coefficient and accuracy rates, show that this new score is less sensitive to the given constraints than the previous scores while providing similar performances.

Research highlights
► Review of feature selection constraint scores.
► The influence of the constraints on the features selected by the constraint scores.
► A new score less sensitive to constraint changes than the classical scores.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 32, Issue 5, 1 April 2011, Pages 656–665
نویسندگان
, , , ,