کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536168 870475 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-strict heterogeneous Stacking
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Non-strict heterogeneous Stacking
چکیده انگلیسی

In this paper, we evaluate a new ensemble schema for regression, where the ensemble is composed of a number of models where each model is built using feature sampled data using a learning algorithm drawn from a set of simple and stable learning algorithms, and the ensemble integration method is Stacking. We evaluate this schema referred to as non-strict heterogeneous Stacking to a number of baseline methods and to strict heterogeneous Stacking, which uses the same number of models as there are base learning algorithms, built using un-sampled data. We demonstrate that non-strict Stacking for the set of base learning algorithms evaluated, strongly outperformed the baseline methods. In addition the added flexibility of non-strict Stacking, allowed it both to outperform strict Stacking and homogeneous Stacking for the same set of base learning algorithms considered. We discuss the conditions in general where non-strict heterogeneous Stacking is likely to be advantageous.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 28, Issue 9, 1 July 2007, Pages 1050–1061
نویسندگان
, , ,