کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536181 870478 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A general framework for image feature matching without geometric constraints
ترجمه فارسی عنوان
یک چارچوب کلی برای تطابق ویژگی تصویر بدون محدودیت های هندسی
کلمات کلیدی
تطبیق ویژگی؛ مسابقه نسبت؛ مسابقه آینه؛ خودتطبیقی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی


• We propose a general framework of 4 algorithms for image feature matching.
• We prove that the traditional Ratio-Match is the worst performer.
• We confirm the theoretical results experimentally on over 3000 image pairs.
• 20 percentage-point higher precision without increased computation time.

Computer vision applications that involve the matching of local image features frequently use Ratio-Match as introduced by Lowe and others, but is this really the optimal approach? We formalize the theoretical foundation of Ratio-Match and propose a general framework encompassing Ratio-Match and three other matching methods. Using this framework, we establish a theoretical performance ranking in terms of precision and recall, proving that all three methods consistently outperform or equal Ratio-Match. We confirm the theoretical results experimentally on over 3000 image pairs and show that matching precision can be increased by up to 20 percentage-points without further assumptions about the images we are using. These gains are achieved by making only a few key changes of the Ratio-Match algorithm that do not affect computation times.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 73, 1 April 2016, Pages 26–32
نویسندگان
, ,