کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536201 870480 2006 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-iterative generalized low rank approximation of matrices
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Non-iterative generalized low rank approximation of matrices
چکیده انگلیسی

As an extension to 2DPCA, generalized low rank approximation of matrices (GLRAM) applies two-sided (i.e., the left and right) rather than single-sided (i.e., the left or the right alone) linear projecting transform(s) to each 2D image for compression and feature extraction. Its advantages over 2DPCA include higher compression ratio, superior classification performance, etc. However, GLRAM can only adopt an iterative rather than analytical approach to get the left and right projecting transforms and lacks a criterion to automatically determine the dimensionality of the projected matrix. In this paper, a novel non-iterative GLRAM (NIGLRAM) is proposed to overcome the above shortcomings. Experimental results on ORL and AR face datasets and COIL-20 object dataset show that NIGLRAM can get not only so-needed closed-form transforms but also comparable performance to GLRAM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 27, Issue 9, 1 July 2006, Pages 1002–1008
نویسندگان
, ,