کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
536265 | 870487 | 2006 | 9 صفحه PDF | دانلود رایگان |

This paper concerns the gender classification task of discriminating between images of faces of men and women from face images. In appearance-based approaches, the initial images are preprocessed (e.g. normalized) and input into classifiers. Recently, support vector machines (SVMs) which are popular kernel classifiers have been applied to gender classification and have shown excellent performance. SVMs have difficulty in determining the hyperparameters in kernels (using cross-validation). We propose to use Gaussian process classifiers (GPCs) which are Bayesian kernel classifiers. The main advantage of GPCs over SVMs is that they determine the hyperparameters of the kernel based on Bayesian model selection criterion. The experimental results show that our methods outperformed SVMs with cross-validation in most of data sets. Moreover, the kernel hyperparameters found by GPCs using Bayesian methods can be used to improve SVM performance.
Journal: Pattern Recognition Letters - Volume 27, Issue 6, 15 April 2006, Pages 618–626