کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536489 870534 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A semi-supervised feature ranking method with ensemble learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A semi-supervised feature ranking method with ensemble learning
چکیده انگلیسی

We consider the problem of using a large amount of unlabeled data to improve the efficiency of feature selection in high-dimension when only a small amount of labeled examples is available. We propose a new method called semi-supervised ensemble learning guided feature ranking method (SEFR for short), that combines a bagged ensemble of standard semi-supervised approaches with a permutation-based out-of-bag feature importance measure that takes into account both labeled and unlabeled data. We provide empirical results on several benchmark data sets indicating that SEFR can lead to significant improvement over state-of-the-art supervised and semi-supervised algorithms.


► We propose a new method called semi-supervised ensemble learning guided feature ranking method.
► It combines a bagged ensemble of semi-supervised approaches with a permutation-based out-of-bag feature importance measure.
► Both labeled and unlabeled data are taken into account.
► The method lead to significant improvement over state-of-the-art supervised and semi-supervised algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 33, Issue 10, 15 July 2012, Pages 1426–1433
نویسندگان
, , ,