کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536499 870544 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new framework for on-line object tracking based on SURF
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A new framework for on-line object tracking based on SURF
چکیده انگلیسی

We present a new object tracking scheme by employing adaptive classifiers to match the corresponding keypoints between consecutive frames. The detection of interest points is a critical step in obtaining robust local descriptions. This paper proposes an efficient feature detector based on SURF, by incrementally predicting the search space, to enhance the repeatability of the tracked interest points. Instead of computing the SURF descriptor, we construct a classifier-based descriptor using on-line boosting. With on-line learning ability based on our sample weighting mechanism, the classifier maintains its discriminative power to establish robust feature description and reliable points matching for subsequent tracking. In addition, matching candidates are validated using improved RANSAC to ensure correct updates and accurate tracking. All of these ingredients contribute measurably to improving overall tracking performance. Experimental results demonstrate the robustness and accuracy of our proposed technique.


► Object tracking is performed by matching keypoints using online classifiers.
► Compute the keypoints by incrementally predicting the object region.
► The scale and dominant orientation of the keypoint is fused in online boosting.
► Employ a non-uniform sampling strategy during RANSAC.
► Discriminative samples are selected and weighted in online learning.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 32, Issue 13, 1 October 2011, Pages 1564–1571
نویسندگان
, , , , ,