کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536808 870628 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A hybrid SVM/DDBHMM decision fusion modeling for robust continuous digital speech recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
A hybrid SVM/DDBHMM decision fusion modeling for robust continuous digital speech recognition
چکیده انگلیسی

This paper proposes an improved hybrid support vector machine and duration distribution based hidden Markov (SVM/DDBHMM) decision fusion model for robust continuous digital speech recognition. We investigate the probability outputs combination of support vector machine and Gaussian mixture model in pattern recognition (called FSVM),and embed the fusion probability as similarity into the phone state level decision space of our duration distribution based hidden Markov model (DDBHMM) speech recognition system (named FSVM/DDBHMM). The performances of FSVM and FSVM/DDBHMM are demonstrated in Iris database and continuous mandarin digital speech corpus in 4 noise environments (white, volvo, babble and destroyerengine) from NOISEX-92. The experimental results show the effectiveness of FSVM in Iris data, and the improvement of average word error rate reduction of FSVM/DDBHMM from 6% to 20% compared with the DDBHMM baseline at various signal noise ratios (SNRs) from −5 dB to 30 dB by step of 5 dB.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 28, Issue 8, 1 June 2007, Pages 912–920
نویسندگان
, , ,