کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536897 870642 2006 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-class feature selection for texture classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Multi-class feature selection for texture classification
چکیده انگلیسی

In this paper, a multi-class feature selection scheme based on recursive feature elimination (RFE) is proposed for texture classifications. The feature selection scheme is performed in the context of one-against-all least squares support vector machine classifiers (LS-SVM). The margin difference between binary classifiers with and without an associated feature is used to characterize the discriminating power of features for the binary classification. A new criterion of min–max is used to mix the ranked lists of binary classifiers for multi-class feature selection. When compared to the traditional multi-class feature selection methods, the proposed method produces better classification accuracy with fewer features, especially in the case of small training sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 27, Issue 14, 15 October 2006, Pages 1685–1691
نویسندگان
, , ,