کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
536955 870648 2005 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On naive Bayesian fusion of dependent classifiers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
On naive Bayesian fusion of dependent classifiers
چکیده انگلیسی

In classifier combination, the relative values of a posteriori probabilities assigned to different hypotheses are more important than the accuracy of their estimates. Because of this, the independence requirement in naive Bayesian fusion should be examined from combined accuracy point of view. In this study, it is investigated whether there is a set of dependent classifiers which provides a better combined accuracy than independent classifiers when naive Bayesian fusion is used. For this purpose, two classes and three classifiers case is initially considered where the pattern classes are not equally probable. Taking into account the increased complexity in formulations, equal a priori probabilities are considered in the general case where N classes and K classifiers are used. The analysis carried out has shown that the combination of dependent classifiers using naive Bayesian fusion may provide much better combined accuracies compared to independent classifiers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 26, Issue 15, November 2005, Pages 2463–2473
نویسندگان
,