کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5427748 1508640 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantum confinement in metal nanofilms: Optical spectra
ترجمه فارسی عنوان
محصوریت کوانتومی در نانوفیلمهای فلزی: طیف نوری
کلمات کلیدی
فیلم های نازک چاه های کوانتومی، ساختار الکترونیکی، لومینسانس،
موضوعات مرتبط
مهندسی و علوم پایه شیمی طیف سنجی
چکیده انگلیسی

Quantum well states in metal nanofilms were studied by optical spectroscopy.The absorption band energies are perfectly described by the particle-in-a-box model.Large Stokes shifts of the emission lines were observed.Evidence of multiple exciton generation reported upon photoexcitation of nanofilms.

We report optical absorption and photoluminescence spectra of Au, Fe, Co and Ni polycrystalline nanofilms in the UV-vis-NIR range, featuring discrete bands resulting from transverse quantum confinement. The film thickness ranged from 1.1 to 15.6 nm, depending on the material. The films were deposited on fused silica substrates by sputtering/thermo-evaporation, with Fe, Co and Ni protected by a SiO2 film deposited on top. The results are interpreted within the particle-in-a-box model, with the box width equal to the mass thickness of the nanofilm. The transverse-quantized energy levels and transition energies scale as the inverse square of the film thickness. The calculated values of the effective electron mass are 0.93 (Au), 0.027 (Fe), 0.21 (Co) and 0.16 (Ni), in units of mo - the mass of the free electron, being independent on the film thickness. The uncertainties in the effective mass values are ca. 2.5%, determined by the film thickness calibration. The second calculated model parameter, the quantum number n of the HOMO, was thickness-independent in Au (5.00) and Fe (6.00), and increased with the film thickness in Co (from 7 to 9) and Ni (from 7 to 11). The transitions observed in the absorbance all start at the level n and correspond to Δn=+1, +2, +3, etc. The photoluminescence bands exhibit large Stokes shifts, shifting to higher energies with the increased excitation energy. The photoluminescence quantum yields grow linearly with the excitation energy, showing evidence of multiple exciton generation. A prototype Fe-SnO2 nanofilm photovoltaic cell demonstrated at least 90% quantum yield of photoelectrons at 77 K.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Quantitative Spectroscopy and Radiative Transfer - Volume 175, May 2016, Pages 68-75
نویسندگان
, ,