کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5427857 | 1508648 | 2015 | 13 صفحه PDF | دانلود رایگان |

- A recently developed open-source boundary element method called BEM++ is presented.
- We employ BEM++ to calculate the scattering properties of ice crystals.
- BEM++ can be used to handle ice crystals of arbitrarily complex shape.
- BEM++ is a fast and accurate method for generating benchmark scattering results.
A number of methods exist for solving the problem of electromagnetic scattering by atmospheric ice crystals. Amongst these methods, only a few are used to generate “benchmark” results in the atmospheric science community. Most notably, the T-matrix method, Discrete Dipole Approximation, and the Finite-Difference Time-Domain method. The Boundary Element Method (BEM), however, has received considerably less attention in this community despite its extensive use and development in other areas of applied mathematics and engineering. Recently the group of Betcke et al. (2015 [1]) at University College London has released a high performance open source boundary element library called BEM++. In this paper, we employ BEM++ to calculate the scattering properties of hexagonal ice columns of fixed orientation, as well as more complicated particles such as hollow columns and bullet-rosettes. The results for hexagonal columns are compared to those obtained using a highly accurate and well-established T-matrix method (Baran et al., 2001 [2]) for a range of different wavelengths and size parameters. It is shown that the results are in excellent agreement and that BEM++ is a fast alternative to the T-matrix method and others for generating benchmark results. However, the large memory requirements of BEM++ cause it to be limited to size parameters ~15 on a standard desktop PC if an accuracy of roughly 1% is required. The main advantages of BEM++ over many other methods are its flexibility to be applied to homogeneous dielectric particles of arbitrarily complex shape, and its open availability. This flexibility is illustrated by the application of BEM++ to scattering by hollow columns with different cavity types, as well as bullet-rosettes with 2-6 branches.
Journal: Journal of Quantitative Spectroscopy and Radiative Transfer - Volume 167, December 2015, Pages 40-52