کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5428555 | 1508679 | 2014 | 17 صفحه PDF | دانلود رایگان |

- Frequency modulation spectrometry (FMS) can provide incorrect molecular parameters.
- Parameters are affected by the choice of lineshape function and the detection phase.
- Around 0.1Â atm the Voigt profile underestimates the signal strength by up to 45%.
- Errors in the detection phase affect the signal strength in the order of %/deg.
- The findings are of relevance for both FMS and NICE-OHMS.
Frequency modulation spectrometry (FMS), and thereby also noise immune cavity enhanced optical heterodyne molecular spectrometry (NICE-OHMS), can detect both absorption and dispersion signals, and can therefore, by curve fitting, extract molecular parameters from both these types of signals. However, parameters evaluated from the two modes of detection have been previously shown not to be identical. Their accuracy is affected by both the type of lineshape used by the fit and the accuracy of the detection phase. A thorough study is presented of the influence of three lineshape functions [Voigt, Rautian, and speed-dependent Voigt (SDV)] and errors in the detection phase on the retrieval of various molecular parameters, in particular the signal strength, which provides information about the concentration of molecules in a gas, from reference spectra in the 10-260Â Torr region. It was found that for data detected and evaluated at pure absorption or dispersion phase by a system calibrated in the Doppler limit the signal strength can be underestimated at higher pressures by up to 45% if the evaluation is made using the Voigt profile. If the detection is plagued by phase errors additional inaccuracies, often in the order of percent per degree phase error (%/deg), can occur. More reliable parameters can be obtained if an appropriate lineshape function is used and the detection phase is considered a free parameter. However, despite this, none of the evaluation procedures can retrieve the molecular parameters fully correctly; the most accurate assessments of the signal strength, obtained when the data is detected close to absorption phase and evaluated by the SDV lineshape function, are still associated with an error of a few percent.
Journal: Journal of Quantitative Spectroscopy and Radiative Transfer - Volume 136, March 2014, Pages 28-44