کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5431093 | 1508715 | 2006 | 13 صفحه PDF | دانلود رایگان |

Laser-produced plasmas at subcritical densities have proven to be efficient sources for X-ray production. In this context, we obtain experimental results from Kr and Xe gas-filled targets that were irradiated by the OMEGA (Laboratory for Laser Energetics, University of Rochester) laser. Nearly 40% of the laser energy was converted into X-rays in the L-shell-photon-energy range (⩾1.6keV) by a Kr-filled target. The conversion efficiency measurements were correlated with time-resolved plasma-temperature measurements done by means of a Thomson-scattering diagnostic. The measured range of temperatures, between 2-3.5 keV, is in good agreement with LASNEX radiation-hydrodynamics simulations. X-ray-cooling rates and charge-state distributions were computed using detailed atomic data from the HULLAC suite of codes. X-ray yields predicted by the cooling-rate calculations are compared to measured spectra, and good agreement is found for predictions made with highly-detailed atomic models. We find that X-ray conversion efficiency in Kr-filled targets is a strong function of temperature, and has an optimum density near 15% of the laser's critical density.
Journal: Journal of Quantitative Spectroscopy and Radiative Transfer - Volume 99, Issues 1â3, MayâJune 2006, Pages 186-198