کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5436803 | 1509650 | 2017 | 56 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Effects of autogenous healing on the recovery of mechanical performance of High Performance Fibre Reinforced Cementitious Composites (HPFRCCs): Part 1
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents the results are shown of a thorough characterization of the self-healing capacity of High Performance Fibre Reinforced Cementitious Composites (HPFRCCs). The capacity of the material will be investigated to completely or partially re-seal the cracks, as a function of its composition, maximum crack width and exposure conditions. The analysis will also consider different flow-induced alignments of fibres, which can result into either strain-hardening or softening behaviour, whether the material is stressed parallel or perpendicularly to the fibres, respectively. Beam specimens, initially pre-cracked in 4-point bending up to different values of crack opening, were submitted to different exposure conditions, including water immersion, exposure to humid or dry air, and wet-and-dry cycles. After scheduled exposure times, ranging from one month to two years, specimens were tested up to failure according to the same test set-up employed for pre-cracking. Outcomes of the self-healing phenomenon, if any, were analysed in terms of recovery of stiffness, strength and ductility. In a durability-based design framework, self-healing indices quantifying the recovery of mechanical properties were also defined and their significance cross-checked.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cement and Concrete Composites - Volume 83, October 2017, Pages 76-100
Journal: Cement and Concrete Composites - Volume 83, October 2017, Pages 76-100
نویسندگان
Liberato Ferrara, Visar Krelani, Fabio Moretti, Marta Roig Flores, Pedro Serna Ros,