کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5436968 1509659 2016 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of the behavior of ultra high performance concrete at early age
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی صنعتی و تولید
پیش نمایش صفحه اول مقاله
Analysis of the behavior of ultra high performance concrete at early age
چکیده انگلیسی
Ultra high performance concretes (UHPCs) are cementitious composite materials with high level of performance characterized by high compressive strength, high tensile strength and superior durability. These are reached by a low water-to-binder ratio, optimized aggregate size distribution, thermal activation, and fiber reinforcement. In the past couple of decades, more and more UHPCs have been developed and found their ways into practice. Thus, the demand for computational models capable of describing and predicting relevant aging phenomena to assist design and planning is increasing. This paper presents the early age experimental characterization as well as the results of subsequent simulations of a typical UHPC matrix. Performed and simulated tests include unconfined compression, splitting (Brazilian), and three-point-bending tests. The computational framework is constructed by coupling a hygro-thermo-chemical (HTC) theory and a comprehensive mesoscale discrete model with formulated aging functions. The HTC component allows taking into account various types of curing conditions with varying temperature and relative humidity and predicting the level of concrete aging. The mechanical component, the Lattice Discrete Particle Model (LDPM), permits the simulation of the failure behavior of concrete at the length scale of major heterogeneities. The aging functions relate the mesoscale LDPM mechanical properties in terms of aging degree, defined in this work as the ratio between the quasi-static elastic modulus at a certain age and its asymptotic value. The obtained results provide insights into UHPC early age mechanisms yielding a computational model for the analysis of aging UHPC structures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cement and Concrete Composites - Volume 74, November 2016, Pages 120-135
نویسندگان
, , , ,