کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5445948 | 1511132 | 2016 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Model-based State-of-charge Estimation Approach of the Lithium-ion Battery Using an Improved Adaptive Particle Filter
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Accurate state of charge (SoC) estimation is of great significance for a lithium-ion battery. This paper presents an adaptive particle filter (APF)-based SoC estimation algorithm for lithium-ion batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the resistance-capacitance network based one-state hysteresis equivalent circuit model and its parameters are determined by the particle swarm optimization method. Then, an improved adaptive particle filter has been proposed and applied to the battery SoC estimation. Finally, the two typical lithium-ion battery, LiFePO4 and NMC lithium-ion, have been used to verify the proposed SoC estimator.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Procedia - Volume 103, December 2016, Pages 394-399
Journal: Energy Procedia - Volume 103, December 2016, Pages 394-399
نویسندگان
Min Ye, Hui Guo, Rui Xiong, Ruixin Yang,