کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5472034 | 1519816 | 2017 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimal design of personalized prostate cancer therapy using Infinitesimal Perturbation Analysis
ترجمه فارسی عنوان
طراحی مطلوب درمان سرطان اختصاصی پروستات با استفاده از آنالیز آشفتگی بی نهایت کم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
The standard treatment for advanced prostate cancer is hormone therapy in the form of continuous androgen suppression (CAS), which unfortunately frequently leads to resistance and relapse. An alternative scheme is intermittent androgen suppression (IAS), in which patients are submitted to cycles of treatment (in the form of androgen deprivation) and off-treatment periods in an alternating manner. In spite of extensive recent clinical experience with IAS, the design of ideal protocols for any given patient remains a challenge. The level of prostate specific antigen (PSA) is frequently monitored to determine when patients will be taken off therapy and when therapy will resume. In this work, we propose a threshold-based policy for optimal IAS therapy design that is parameterized by lower and upper PSA threshold values and is associated with a cost metric that combines clinically relevant measures of therapy success. We use a Stochastic Hybrid Automaton (SHA) model of prostate cancer evolution under IAS and perform Infinitesimal Perturbation Analysis (IPA) to adaptively adjust PSA threshold values so as to improve therapy outcomes. We also apply this methodology to clinical data from real patients, and obtain promising results and valuable insights for personalized IAS therapy design.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Hybrid Systems - Volume 25, August 2017, Pages 246-262
Journal: Nonlinear Analysis: Hybrid Systems - Volume 25, August 2017, Pages 246-262
نویسندگان
Julia L. Fleck, Christos G. Cassandras,