کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5482228 1522310 2017 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating
ترجمه فارسی عنوان
مقایسه تراکم انرژی و ظرفیت ذخیره سازی سیستمهای ذخیره گرمای فصلی جذب مایع جامد و مایع برای گرم کردن فضای کم دما
کلمات کلیدی
ذخیره سازی ذخیره انرژی حرارتی، جذب جامد، جذب مایع، بهره وری انرژی، ذخیره سازی فصلی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Sorption heat storage can potentially store thermal energy for long time periods with a higher energy density compared to conventional storage technologies. A performance comparison in terms of energy density and storage capacity costs of different sorption system concepts used for seasonal heat storage is carried out. The reference scenario for the analysis consisted of satisfying the yearly heating demand of a passive house. Three salt hydrates (MgCl2, Na2S, and SrBr2), one adsorbent (zeolite 13X) and one ideal composite based on CaCl2, are used as active materials in solid sorption systems. One liquid sorption system based on NaOH is also considered in this analysis. The focus is on open solid sorption systems, which are compared with closed sorption systems and with the liquid sorption system. The main results show that, for the assumed reactor layouts, the closed solid sorption systems are generally more expensive compared to open systems. The use of the ideal composite represented a good compromise between energy density and storage capacity costs, assuming a sufficient hydrothermal stability. The ideal liquid system resulted more affordable in terms of reactor and active material costs but less compact compared to the systems based on the pure adsorbent and certain salt hydrates. Among the main conclusions, this analysis shows that the costs for the investigated ideal systems based on sorption reactions, even considering only the active material and the reactor material costs, are relatively high compared to the acceptable storage capacity costs defined for different users. However, acceptable storage capacity costs reflect the present market condition, and they can sensibly increase or decrease in a relatively short period due to for e.g. the variation of fossil fuels prices. Therefore, in the upcoming future, systems like the ones investigated in this work can become more competitive in the energy sector.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable and Sustainable Energy Reviews - Volume 76, September 2017, Pages 1314-1331
نویسندگان
, , , , ,