کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5488453 1524103 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian compressive sensing for thermal imagery using Gaussian-Jeffreys prior
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک اتمی و مولکولی و اپتیک
پیش نمایش صفحه اول مقاله
Bayesian compressive sensing for thermal imagery using Gaussian-Jeffreys prior
چکیده انگلیسی
Recent advances have shown a great potential to explore compressive sensing (CS) theory for thermal imaging due to the capability of recovering high-resolution information from low-resolution measurements. In this paper, we present a Bayesian CS reconstruction algorithm that makes use of a new sparsity-inducing prior, referred as Gaussian-Jeffreys prior, and demonstrate performance gain of imposing this new prior on thermal imagery where the signal-to-noise ratio is low. We first derive a hierarchical representation of the Gaussian-Jeffreys prior that facilitates computational tractability, then propose an efficient evidence approximation inference algorithm. We show that the proposed estimator is able to provide stronger sparsity-inducing power comparing to the conventional choices. Extensive numerical examples are provided with performance comparisons of different CS estimators, in particular when the compressive measurements are available via thermal imaging.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 83, June 2017, Pages 51-61
نویسندگان
, , ,