کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5488578 1524101 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discrimination methods for biological contaminants in fresh-cut lettuce based on VNIR and NIR hyperspectral imaging
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک اتمی و مولکولی و اپتیک
پیش نمایش صفحه اول مقاله
Discrimination methods for biological contaminants in fresh-cut lettuce based on VNIR and NIR hyperspectral imaging
چکیده انگلیسی
The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 85, September 2017, Pages 1-12
نویسندگان
, , , , , , ,